19 research outputs found

    Emission measurements of alkenes, alkanes, SO2, and NO2 from stationary sources in Southeast Texas over a 5 year period using SOF and mobile DOAS

    Get PDF
    A mobile platform for flux measurements of VOCs (alkanes and alkenes), SO2, and NO2 emissions using the Solar Occultation Flux (SOF) method and mobile differential optical absorption spectroscopy (DOAS) was used in four different studies to measure industrial emissions. The studies were carried out in several large conglomerates of oil refineries and petrochemical industries in Southeast and East Texas in 2006, 2009, 2011, and 2012. The measured alkane emissions from the Houston Ship Channel (HSC) have been fairly stable between 2006 and 2011, averaging about 11,500kg/h, while the alkene emissions have shown greater variations. The ethene and propene emissions measured from the HSC were 1511kg/h and 878kg/h, respectively, in 2006, while dropping to roughly 600kg/h for both species in 2009 and 2011. The results were compared to annual inventory emissions, showing that measured VOC emissions were typically 5-15 times higher, while for SO2 and NO2 the ratio was typically 0.5-2. AP-42 emission factors were used to estimate meteorological effects on alkane emissions from tanks, showing that these emissions may have been up to 35-45% higher during the studies than the annual average. A more focused study of alkene emissions from a petrochemical complex in Longview in 2012 identified two upset episodes, and the elevation of the total emissions during the measurement period due to the upsets was estimated to be approximately 20%. Both meteorological and upset effects were small compared to the factor of 5-15, suggesting that VOC emissions are systematically and substantially underestimated in current emission inventories

    Intercomparison of field measurements of nitrous acid (HONO) during the SHARP campaign

    Get PDF
    Because of the importance of HONO as a radical reservoir, consistent and accurate measurements of its concentration are needed. As part of SHARP (Study of Houston Atmospheric Radical Precursors), time series of HONO were obtained by six different measurement techniques on the roof of the Moody Tower at the University of Houston. Techniques used were long path differential optical absorption spectroscopy (DOAS), stripping coil-visible absorption photometry (SC-AP), long path absorption photometry (LOPAP® ), mist chamber/ion chromatography (MC-IC), quantum cascade-tunable infrared laser differential absorption spectroscopy (QC-TILDAS), and ion drift-chemical ionization mass spectrometry (ID-CIMS). Various combinations of techniques were in operation from 15 April through 31 May 2009. All instruments recorded a similar diurnal pattern of HONO concentrations with higher median and mean values during the night than during the day. Highest values were observed in the final 2 weeks of the campaign. Inlets for the MC-IC, SC-AP, and QC-TILDAS were collocated and agreed most closely with each other based on several measures. Largest differences between pairs of measurements were evident during the day for concentrations ~100 parts per trillion (ppt). Above ~ 200 ppt, concentrations from the SC-AP, MC-IC, and QC-TILDAS converged to within about 20%, with slightly larger discrepancies when DOAS was considered. During the first 2 weeks, HONO measured by ID-CIMS agreed with these techniques, but ID-CIMS reported higher values during the afternoon and evening of the final 4 weeks, possibly from interference from unknown sources. A number of factors, including building related sources, likely affected measured concentrations

    Establishing Lagrangian Connections between Observations within Air Masses Crossing the Atlantic during the ICARTT Experiment

    Get PDF
    The International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)-Lagrangian experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts using two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique is then used to identify Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these coincident matches is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown and the downwind minus upwind differences in tracers are discussed

    Modeling study of biomass burning plumes and their impact on urban air quality; a case study of Santiago de Chile

    No full text
    On January 4, 2014, during the summer period in South America, an intense forest and dry pasture wildfire occurred nearby the city of Santiago de Chile. On that day the biomass-burning plume was transported by low-intensity winds towards the metropolitan area of Santiago and impacted the concentration of pollutants in this region. In this study, the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem) is implemented to investigate the biomass-burning plume associated with these wildfires nearby Santiago, which impacted the ground-level ozone concentration and exacerbated Santiago's air quality. Meteorological variables simulated by WRF/Chem are compared against surface and radiosonde observations, and the results show that the model reproduces fairly well the observed wind speed, wind direction air temperature and relative humidity for the case studied. Based on an analysis of the transport of an inert tracer released over the locations, and at the time the wildfires were captured by the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS), the model reproduced reasonably well the transport of biomass burning plume towards the city of Santiago de Chile within a time delay of two hours as observed in ceilometer data. A six day air quality simulation was performed: the first three days were used to validate the anthropogenic and biogenic emissions, and the last three days (during and after the wildfire event) to analyze the performance of WRF/Chem plume-rise model within FINNv1 fire emission estimations. The model presented a satisfactory performance on the first days of the simulation when contrasted against data from the well established air quality network over the city of Santiago de Chile. These days represent the urban air quality base case for Santiago de Chile unimpacted by fire emissions. However, for the last three simulation days, which were impacted by the fire emissions, the statistical indices showed a decrease in the model performance. While the model showed a satisfactory evidence that wildfires plumes that originated in the vicinity of Santiago de Chile were transported towards the urban area and impacted the air quality, the model still underpredicted some pollutants substantially, likely due to misrepresentation of fire emission sources during those days. Potential uncertainties may include to the land use/land cover classifications and its characteristics, such as type and density of vegetation assigned to the region, where the fire spots are detected. The variability of the ecosystem type during the fire event might also play a role.FONDAP 15110009 DICYT-USACH 021541R

    Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    No full text
    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m−3) and organic material (5.5 ± 4.0 μg m−3), with contributions of organic material from both primary (∼32%) and secondary (∼68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established

    Heterogeneous conversion of nitric acid to nitrous acid on the surface of primary organic aerosol in an urban atmosphere

    No full text
    Nitrous acid (HONO), nitric acid (HNO3), and organic aerosol were measured simultaneously atop an 18-story tower in Houston, TX during August and September of 2006. HONO and HNO3 were measured using a mist chamber/ion chromatographic technique, and aerosol size and chemical composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Observations indicate the potential for a new HONO formation pathway: heterogeneous conversion of HNO3 on the surface of primary organic aerosol (POA). Significant HONO production was observed, with an average of 0.97 ppbv event−1 and a maximum increase of 2.2 ppb in 4 h. Nine identified events showed clear HNO3 depletion and well-correlated increases in both HONO concentration and POA-dominated aerosol surface area (SA). Linear regression analysis results in correlation coefficients (r2) of 0.82 for HONO/SA and 0.92 for HONO/HNO3. After correction for established HONO formation pathways, molar increases in excess HONO (HONOexcess) and decreases in HNO3 were nearly balanced, with an average HONOexcess/HNO3 value of 0.97. Deviations from this mole balance indicate that the residual HNO3 formed aerosol-phase nitrate. Aerosol mass spectral analysis suggests that the composition of POA could influence HONO production. Several previously identified aerosol-phase PAH compounds were enriched during events, suggesting their potential importance for heterogeneous HONO formation

    Measurements of primary trace gases and NOY composition in Houston, Texas

    No full text
    Concentrations of CO, SO2, NO, NO2, and NOY were measured atop the University of Houston\u27s Moody Tower supersite during the 2006 TexAQS-II Radical and Aerosol Measurement Project (TRAMP). The lowest concentrations of all primary and secondary species were observed in clean marine air in southerly flow. SO2 concentrations were usually low, but increased dramatically in sporadic midday plumes advected from sources in the Houston Ship Channel (HSC), located NE of the site. Concentrations of CO and NOx displayed large diurnal variations in keeping with their co-emission by mobile sources in the Houston Metropolitan Area (HMA). CO/NOx emission ratios of 5.81 ± 0.94 were observed in the morning rush hour. Nighttime concentrations of NOx(NOx = NO + NO2) and NOY(NOY = NO + NO2 + NO3 + HNO3 + HONO + 2∗N2O5 + HO2NO2 + PANs + RONO2 + p-NO3− + …) were highest in winds from the NNW-NE due to emission from mobile sources. Median ratios of NOx/NOY were approximately 0.9 overnight, reflecting the persistence and/or generation of NOZ (NOZ = NOY − NOx) species in the nighttime Houston boundary layer, and approached unity in the morning rush hour. Daytime concentrations of NOx and NOY were highest in winds from the HSC. NOx/NOY ratios reached their minimum values (median ca 0.63) from 1300 to 1500 CST, near local solar noon, and air masses often retained enough NOx to sustain additional O3 formation farther downwind. HNO3 and PANs comprised the dominant NOZ species in the HMA, and on a median basis represented 17–20% and 12–15% of NOY, respectively, at midday. Concentrations of HNO3, PANs, and NOZ, and fractional contributions of these species to NOY, were at a maximum in NE flow, reflecting the source strength and reactivity of precursor emissions in the HSC. As a result, daytime O3 concentrations were highest in air masses with HSC influence. Overall, our findings confirm the impact of the HSC as a dominant source region within the HMA. A comparison of total NOYmeasurements with the sum of measured NOY species (NOYi = NOx + HNO3 + PANs + HONO + p-NO3−) yielded excellent overall agreement during both day ([NOY](ppb) = ([NOYi](ppb)∗1.03 ± 0.16) − 0.42; r2 = 0.9933) and night ([NOY](ppb) = ([NOYi](ppb)∗1.01 ± 0.16) + 0.18; r2 = 0.9975). A similar comparison between NOY–NOx concentrations and the sum of NOZi(NOZi = HNO3 + PANs + HONO + p-NO3−) yielded good overall agreement during the day ([NOZ](ppb) = ([NOZi](ppb)∗1.01 ± 0.30) + 0.044 ppb; r2 = 0.8527) and at night ([NOZ](ppb) = ([NOZi](ppb)∗1.12 ± 0.69) + 0.16 ppb; r2 = 0.6899). Median ratios of NOZ/NOZi were near unity during daylight hours but increased to approximately 1.2 overnight, a difference of 0.15–0.50 ppb. Differences between NOZ and NOZi rarely exceeded combined measurement uncertainties, and variations in NOZ/NOZi ratios may have resulted solely from errors in conversion efficiencies of NOY species and changes in NOY composition. However, nighttime NOZ/NOZi ratios and the magnitude of NOZ − NOZidifferences were generally consistent with recent observations of ClNO2 in the nocturnal Houston boundary layer

    Deciphering the Role of Radical Precursors during the Second Texas Air Quality Study

    No full text
    The Texas Environmental Research Consortium (TERC) funded significant components of the Second Texas Air Quality Study (TexAQS II), including the TexAQS II Radical and Aerosol Measurement Project (TRAMP) and instrumented flights by a Piper Aztec aircraft. These experiments called attention to the role of short-lived radical sources such as formaldehyde (HCHO) and nitrous acid (HONO) in increasing ozone productivity. TRAMP instruments recorded daytime HCHO pulses as large as 32 parts per billion (ppb) originating from upwind industrial activities in the Houston Ship Channel, where in situ surface monitors detected HCHO peaks as large as 52 ppb. Moreover, Ship Channel petrochemical flares were observed to produce plumes of apparent primary HCHO. In one such combustion plume that was depleted of ozone by large emissions of oxides of nitrogen (NOx), the Piper Aztec measured a ratio of HCHO to carbon monoxide (CO) 3 times that of mobile sources. HCHO from uncounted primary sources or ozonolysis of underestimated olefin emissions could significantly increase ozone productivity in Houston beyond previous expectations. Simulations with the CAMx model show that additional emissions of HCHO from industrial flares or mobile sources can increase peak ozone in Houston by up to 30 ppb. Other findings from TexAQS II include significant concentrations of HONO throughout the day, well in excess of current air quality model predictions, with large nocturnal vertical gradients indicating a surface or near-surface source of HONO, and large concentrations of nighttime radicals (∼30 parts per trillion [ppt] HO2). HONO may be formed heterogeneously on urban canopy or particulate matter surfaces and may be enhanced by organic aerosol of industrial or motor vehicular origin, such as through conversion of nitric acid (HNO3). Additional HONO sources may increase daytime ozone by more than 10 ppb. Improving the representation of primary and secondary HCHO and HONO in air quality models could enhance the simulated effectiveness of control strategies

    Impact of clouds and aerosols on ozone production in Southeast Texas

    No full text
    A radiative transfer model and photochemical box model are used to examine the effects of clouds and aerosols on actinic flux and photolysis rates, and the impacts of changes in photolysis rates on ozone production and destruction rates in a polluted urban environment like Houston, Texas. During the TexAQS-II Radical and Aerosol Measurement Project the combined cloud and aerosol effects reduced j(NO2) photolysis frequencies by nominally 17%, while aerosols reduced j(NO2) by 3% on six clear sky days. Reductions in actinic flux due to attenuation by clouds and aerosols correspond to reduced net ozone formation rates with a nearly one-to-one relationship. The overall reduction in the net ozone production rate due to reductions in photolysis rates by clouds and aerosols was approximately 8 ppbv h−1
    corecore